Difference between revisions of "FIND Examples"
Line 96: | Line 96: | ||
A feature of MongoDB is the [http://docs.mongodb.org/manual/reference/object-id/ ObjectID] or "_id".<br/> | A feature of MongoDB is the [http://docs.mongodb.org/manual/reference/object-id/ ObjectID] or "_id".<br/> | ||
This is a unique ID MongoDB adds to each document. Unlike other keys, it has to be <b>explicitly</b> set to false to be excluded from the results set.<br/> | This is a unique ID MongoDB adds to each document. Unlike other keys, it has to be <b>explicitly</b> set to false to be excluded from the results set.<br/> | ||
+ | <div class="hint" title="Why does the answer say SON?"> | ||
+ | MongoDB uses [http://bsonspec.org/ 'BSON'] or 'Binary JSON'. Python interprets BSON data as a [https://docs.python.org/3/tutorial/datastructures.html#dictionaries dict]. Dicts do not retain key order, so [http://api.mongodb.org/python/current/api/bson/son.html#bson.son.SON SON] is added to created an ordered mapping. | ||
+ | </div> | ||
<p class=strong>Get the population of Germany</p> | <p class=strong>Get the population of Germany</p> | ||
<pre class=def> | <pre class=def> |
Revision as of 13:40, 15 July 2015
Introducing the world
collection of countries
These examples introduce NoSQL using MonogDB and PyMongo under Python3.4. We will be using the find() command on the collection world:
The following is included in the examples but hidden
#ENCODING import io import sys sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-16') #MONGO from pymongo import MongoClient client = MongoClient() client.progzoo.authenticate('scott','tiger') db = client['progzoo'] #FORCE ORDERING from bson import CodecOptions, SON opts = CodecOptions(document_class=SON) db.world = db.world.with_options(codec_options=opts) #PRETTY import pprint pp = pprint.PrettyPrinter(indent=4)
By default, find() returns the entire contents of a collection. This is equivalent to find({})
Show all the documents in world
pp.pprint(list( db.world.find() ))
pp.pprint(list(db.world.find()))
It is also possible to just return the first document with find_one(). The Mongo shell equivalent to this is findOne()
list() is a python function and is a convient way to display a cursor object. Alternatively you could use a for loop:
for document in db.<collection>.find(): print(document)
find_one() returns a single document, so a list() or loop is not needed.
Show the first document of world
pp.pprint(db.world.find_one())
pp.pprint(db.world.find_one())
It is also possible to specify which document you want by its position.
print(list( db.world.find().skip(49).limit(1) ))
Get the 50th document of world
pp.pprint( db.world.find()[50] )
pp.pprint(db.world.find()[50])
Querying
By passing arguments to find() we can search for specific documents
Get all the data concerning france
pp.pprint(list( db.world.find({"name":"France"}) ))
pp.pprint(list(db.world.find({"name":"France"})))
By passing a second parameter to find() the output can be limited to certain field(s)
In this example 1 indicates "true" and 0 indicates "false"
A feature of MongoDB is the ObjectID or "_id".
This is a unique ID MongoDB adds to each document. Unlike other keys, it has to be explicitly set to false to be excluded from the results set.
MongoDB uses 'BSON' or 'Binary JSON'. Python interprets BSON data as a dict. Dicts do not retain key order, so SON is added to created an ordered mapping.
Get the population of Germany
pp.pprint(list( db.world.find({"name":"Germany"},{"population":1,"_id":0}) ))
pp.pprint(list(db.world.find({"name":"Germany"},{"population":1,"_id":0})))
MongoDB also allows comparisons. Syntax:
Mongo | MySQL -------------- $eq | == $gt | > $gte | >= $lt | < $lte | <= $ne | !=, <> $in | IN $nin | NOT IN
List the countries with a population that's less than 1 million.
pp.pprint(list( db.world.find({"population":{"$lt":1000000}},{"name":1,"_id":0}) ))
pp.pprint(list(db.world.find({"population":{"$lt":1000000}},{"name":1,"_id":0})))
It's also possible to have multiple conditions for an $and, $or, etc. This can be done in several ways, for example:
db.<collection>.find({<first condition>,<second condition>} db.world.find({"population":{"$lt":1000000},"area":{"$gt":200000}) db.<collection>.find({"$and":[<first condition>,<second condition>]} db.world.find({"$and":[{"population":{"$lt":1000000}},{"area":{"$gt":200000}}]}
Find the country with less than 1 million people, but over 200000km2 area
pp.pprint(list( db.world.find({"population":{"$lt":1000000},"area":{"$gt":200000}},{"name":1,"_id":0}) ))
pp.pprint(list(db.world.find({"population":{"$lt":1000000},"area":{"$gt":200000}},{"name":1,"_id":0})))
We can also use lists with $in and $nin:
Find the continent of Brazil, the United Kingdom, and Ghana.
pp.pprint(list( db.world.find({"name":{"$in":["Brazil","United Kingdom","Ghana"]}},{"name":1,"_id":0}) ))
pp.pprint(list(db.world.find({"name":{"$in":["Brazil","United Kingdom","Ghana"]}},{"name":1,"_id":0})))