AGGREGATE examples: Difference between revisions
From NoSQLZoo
mNo edit summary |
|||
(35 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
==aggregate== | |||
The aggregate function takes a list of operations - this is the pipeline. | |||
The data passes through each stage of the pipeline in turn. | |||
Pipeline stages can include: | |||
* '''$group''' This is the aggregate special sauce; you specify the _id value, the output from this stage includes one entry for each distinct _id value. In SQL you would use a GROUP BY clause | |||
* '''$match''' - this acts as a filter, some data items pass through this stage, some do not. Similar to the WHERE clause in SQL | |||
* '''$project''' - this can be used to transform each element. Rather like the values on the SELECT line of an SQL query | |||
* '''$limit''' | |||
* '''$sort''' | |||
* '''$skip''' | |||
<div class='extra_space' style='width:1em; height:6em;'></div> | <div class='extra_space' style='width:1em; height:6em;'></div> | ||
==$group== | |||
<div class="q" data-lang="mongo"> | |||
'''$group''' allows you to collect group items that share common features | |||
* _id - this determines the values to be grouped | |||
* $continent and $population refers to keys 'continent' and 'population' available in each item | |||
* $sum is an aggregating function, it takes many values in and returns a single value. Other examples of aggregating functions are $min $max, $avg | |||
<p class="strong">List the continents</p> | |||
<pre class="def"><nowiki> | |||
db.world.aggregate( | |||
{$group: {_id: "$continent"}, pop:{$sum:'$population'}} | |||
);</nowiki></pre> | |||
</div> | |||
<div class=q data-lang=" | ==$match== | ||
<div class="q" data-lang="mongo"> | |||
<p class=strong>Show all the details for France</p> | '''$match''' performs queries in a similar way to <syntaxhighlight lang="JavaScript" inline>find()</syntaxhighlight> | ||
<pre class=def> | <p class="strong">Show all the details for France</p> | ||
<pre class="def"><nowiki> | |||
db.world.aggregate([ | |||
{$match: {name: "France"}} | |||
]);</nowiki></pre> | |||
<pre class="ans"><nowiki>db.world.aggregate([{$match:{name:"France"}}]);</nowiki></pre> | |||
</pre> | |||
< | |||
</div> | </div> | ||
==$limit== | |||
<div class="q" data-lang="mongo">'''$limit''' sets the amount of documents to be handed to the next stage in the pipeline. | |||
<p class="strong">Return the first two document</p> | |||
<pre class="def"><nowiki> | |||
db.world.aggregate([ | |||
{$limit: 2} | |||
]);</nowiki></pre> | |||
<pre class="ans"><nowiki>db.world.aggregate([{"$limit":2}]);</nowiki></pre> | |||
</div> | </div> | ||
<div class=q data-lang=" | ==$project== | ||
<div class="q" data-lang="mongo"> | |||
It can also has the ability to | '''$project''' selects what fields to display.<br/> | ||
<p class=strong>Show the name and population density of all Asian countries. (population/area)</p> | It can also has the ability to create new fields and to compare fields against each other without using '''$where''' | ||
Note that "density" is a new field | <p class="strong">Show the name and population density of all Asian countries. (population/area)</p> | ||
<div class=hint title="Dealing with division by 0"> | Note that "density" is a new field made from the result of dividing two existing fields, and that '''$divide''' is an aggregate function. | ||
To avoid diving by 0 | <div class="hint" title="Dealing with division by 0"> | ||
< | To avoid diving by 0 insert a '''$match''' to remove any countries with no area (Vatican City), then pipe these results through to '''$project'''<br/> | ||
There is no need to check if values are <syntaxhighlight lang="JavaScript" inline>null</syntaxhighlight>, MongoDB will ignore these documents. | |||
</ | |||
</div> | </div> | ||
<pre class="def"><nowiki> | |||
db.world.aggregate([ | |||
{$match: {area: {$ne: 0}, continent: "Asia"}}, | |||
{$project: { | |||
_id: 0, | |||
name: 1, | |||
density: {$divide: ["$population", "$area"]} | |||
}} | |||
]);</nowiki></pre> | |||
<pre class="ans"><nowiki>db.world.aggregate([{"$match":{"area":{"$ne":0},"continent":"Asia"}},{"$project":{"_id":0,"name":1,"density":{"$divide":["$population","$area"]}}}]);</nowiki></pre> | |||
</div> | </div> | ||
<div class=q data-lang=" | ==aggregate composition== | ||
<div class="q" data-lang="mongo"> | |||
<p class=strong>Show the name of Asian countries with a density that's over 500 people per km<sup>2</sup>. (population/area)</p> | You can have several pipeline stages, the data flows through each one in turn. | ||
<pre class=def> | <p class="strong">Show the name of Asian countries with a density that's over 500 people per km<sup>2</sup>. (population/area)</p> | ||
<pre class="def"><nowiki> | |||
db.world.aggregate([ | |||
{$match: {area: {$ne: 0}, continent: "Asia"}}, | |||
{$project: { | |||
_id: 0, | |||
name: 1, | |||
density: {$divide: ["$population", "$area"]} | |||
}}, | |||
{$match: {density: {$gt: 500}}} | |||
]);</nowiki></pre> | |||
<pre class="ans"><nowiki>db.world.aggregate([{"$match":{"area":{"$ne":0},"continent":"Asia"}},{"$project":{"_id":0,"name":1,"density":{"$divide":["$population","$area"]}}},{"$match":{"density":{"$gt":500}}}]);</nowiki></pre> | |||
</pre> | |||
< | |||
</ | |||
</div> | </div> | ||
<div class=q data-lang=" | ==$sort== | ||
<div class="q" data-lang="mongo"> | |||
Note that | '''$sort''' allows ordering of the results set, where 1 is ascending and -1 is descending.<br/> | ||
<p class=strong>Show the name of all countries in descending order.</p> | Note that not including '''$match''' is the same as <syntaxhighlight lang="JavaScript" inline>{"$match":{}}</syntaxhighlight> | ||
<pre class=def> | <p class="strong">Show the name of all countries in descending order.</p> | ||
<pre class="def"><nowiki> | |||
db.world.aggregate([ | |||
{"$project":{ | |||
"_id":0, | |||
"name":1, | |||
}}, | |||
{"$sort":{ | |||
"name":-1 | |||
}} | |||
]);</nowiki></pre> | |||
<pre class="ans"><nowiki>db.world.aggregate([{"$project":{"_id":0,"name":1,}},{"$sort":{"name":-1}}])</nowiki></pre> | |||
</pre> | |||
< | |||
</ | |||
</div> | </div> | ||
==Grouping== | ==Grouping== | ||
Grouping | Grouping provides accumulator operations such as '''$sum'''<br /> | ||
All groups must have an | All groups must have an '''_id'''. To see why this is useful imagine the following:<br/><br/> | ||
So far you've been using the collection | So far you've been using the '''world''' collection</code><br/> | ||
As every country has a continent, it would make sense to have countries as a nested document inside continents: e.g: | |||
< | <syntaxhighlight lang="JavaScript"> | ||
[ | [ | ||
{"name":"Africa", | {"name": "Africa", | ||
"countries":[ | "countries": [ | ||
{"name":"Algeria", | {"name": "Algeria", "capital": "Algiers", ...}, | ||
{"name":"Angola", | {"name": "Angola", "capital": "Luanda", ...}, | ||
{"name":"Benin", | {"name": "Benin", "capital": "Porto-Novo", ...}. | ||
{...}, | {...}, | ||
... | ... | ||
]}, | ]}, | ||
{"name":"Asia", | {"name": "Asia", | ||
"countries":[ | "countries": [ | ||
{"name":"Afghanistan","capital":"Kabul", ...}, | {"name": "Afghanistan", "capital": "Kabul", ...}, | ||
{"name":"Azerbaijan", "capital":"Baku", | {"name": "Azerbaijan", "capital": "Baku", ...}, | ||
{"name":"Bahrain", | {"name": "Bahrain", "capital": "Manama", ...}, | ||
{...}, | {...}, | ||
... | ... | ||
Line 128: | Line 130: | ||
... | ... | ||
] | ] | ||
</ | </syntaxhighlight> | ||
The | The '''world''' collection isn't like this however. It uses the following structure, which has a redundancy where '''continent''' is repeated for each country. | ||
< | <syntaxhighlight lang="JavaScript"> | ||
[ | [ | ||
{"name":"Afghanistan","capital":"Kabul", | {"name": "Afghanistan", "capital": "Kabul", "continent": "Asia", ...}, | ||
{"name":"Albania", | {"name": "Albania", "capital": "Tirana", "continent": "Europe", ...}, | ||
{"name":"Algeria", | {"name": "Algeria", "capital": "Algiers", "contiennt": "Africa", ...}, | ||
{...}, | {...}, | ||
... | ... | ||
] | ] | ||
</ | </syntaxhighlight> | ||
The code to group by continent is <syntaxhighlight lang="JavaScript" inline>"_id":"$continent"</syntaxhighlight><br/> | |||
<div class=q data-lang=" | If instead the question was to group by country the code would be <syntaxhighlight lang="JavaScript" inline>"_id": "$name"</syntaxhighlight>.<br/> | ||
To operate over the whole document (which would have the same effect as <syntaxhighlight lang="JavaScript" inline>"_id": "$name"</syntaxhighlight>) <syntaxhighlight lang="JavaScript" inline>"_id": "null"</syntaxhighlight> or <syntaxhighlight lang="JavaScript" inline>"_id": None</syntaxhighlight> can be used. | |||
<p class=strong>Get the smallest and largest GDPs of each continent.</p> | ==group operators== | ||
<pre class=def> | <div class="q" data-lang="mongo"> | ||
'''$max''' and '''$min''' can be used to get the largest and smallest values in a group. | |||
<p class="strong">Get the smallest and largest GDPs of each continent.</p> | |||
<pre class="def"><nowiki> | |||
db.world.aggregate([ | |||
{$group: { | |||
_id: '$continent', | |||
min: {$min: "$gdp"}, | |||
max: {$max: "$gdp"} | |||
}}, | |||
{$project: { | |||
_id: 1, | |||
min: 1, | |||
max: 1 | |||
}} | |||
</pre> | ]);</nowiki></pre> | ||
< | <pre class="ans"><nowiki>db.world.aggregate([{"$group":{'_id':'$continent','min':{"$min":"$gdp"},'max':{"$max":"$gdp"}}},{"$project":{"_id":1,"min":1,"max":1}}]);</nowiki></pre> | ||
</ | |||
</div> | </div> | ||
<div class=q data-lang=" | <div class="q" data-lang="mongo"> | ||
Some other useful aggregate functions to know are '''$sum''' and average: '''$avg'''<br/> | |||
The example below combines previous example material. | |||
<p class=strong> | <p class="strong">Order the continents in descending order by total GDP, Include the average GDP for each country.</p> | ||
< | <pre class="def"><nowiki> | ||
db.world.aggregate([ | |||
{$match: {}}, | |||
{$group: { | |||
_id:"$continent", | |||
"Total GDP": {"$sum": "$gdp"}, | |||
"Average GDP": {"$avg": "$gdp"} | |||
}}, | |||
{$sort: { | |||
"Total GDP":-1 | |||
</pre> | }}, | ||
< | {$project:{ | ||
"Area": "$_id", | |||
"Total GDP": 1, | |||
</ | "Average GDP": 1, | ||
_id: 0 | |||
}} | |||
]);</nowiki></pre> | |||
<pre class="ans"><nowiki>db.world.aggregate([{"$group":{"_id":"$continent","Total GDP":{"$sum":"$gdp"},"Average GDP":{"$avg":"$gdp"}}},{"$sort":{"Total GDP":-1}},{"$project":{"Area":"$_id","Total GDP":1,"Average GDP":1,"_id":0}}]);</nowiki></pre> | |||
</div> | </div> | ||
<div class=q data-lang=" | <div class="q" data-lang="mongo"> | ||
Using Conditions<br/><br/> | |||
'''$cond''' is similar to a '''CASE''' statement in other languages.<br/> | |||
< | It has the form <syntaxhighlight lang="JavaScript" inline>"$cond": [{<comparison>: [<field or value>, <field or value>]}, <true case>, <false case>]</syntaxhighlight><br/><br/> | ||
<pre class=def> | <pre class="def"><nowiki> | ||
db.world.aggregate([ | |||
{$group: { | |||
_id: { | |||
" | $cond: [{"$eq": ["$continent", "Eurasia"]}, "Europe", "$continent"] | ||
}, | |||
area: {$sum: "$area"} | |||
}}, | |||
{$sort: { | |||
area: -1 | |||
}}, | |||
{$project: { | |||
_id: 1, | |||
area: 1 | |||
}} | |||
]);</nowiki></pre> | |||
</ | |||
</ | |||
</div> | </div> |
Latest revision as of 20:22, 1 April 2022
aggregate
The aggregate function takes a list of operations - this is the pipeline.
The data passes through each stage of the pipeline in turn.
Pipeline stages can include:
- $group This is the aggregate special sauce; you specify the _id value, the output from this stage includes one entry for each distinct _id value. In SQL you would use a GROUP BY clause
- $match - this acts as a filter, some data items pass through this stage, some do not. Similar to the WHERE clause in SQL
- $project - this can be used to transform each element. Rather like the values on the SELECT line of an SQL query
- $limit
- $sort
- $skip
$group
$group allows you to collect group items that share common features
- _id - this determines the values to be grouped
- $continent and $population refers to keys 'continent' and 'population' available in each item
- $sum is an aggregating function, it takes many values in and returns a single value. Other examples of aggregating functions are $min $max, $avg
List the continents
db.world.aggregate( {$group: {_id: "$continent"}, pop:{$sum:'$population'}} );
$match
$match performs queries in a similar way to find()
Show all the details for France
db.world.aggregate([ {$match: {name: "France"}} ]);
db.world.aggregate([{$match:{name:"France"}}]);
$limit
Return the first two document
db.world.aggregate([ {$limit: 2} ]);
db.world.aggregate([{"$limit":2}]);
$project
$project selects what fields to display.
It can also has the ability to create new fields and to compare fields against each other without using $where
Show the name and population density of all Asian countries. (population/area)
Note that "density" is a new field made from the result of dividing two existing fields, and that $divide is an aggregate function.
To avoid diving by 0 insert a $match to remove any countries with no area (Vatican City), then pipe these results through to $project
There is no need to check if values are null
, MongoDB will ignore these documents.
db.world.aggregate([ {$match: {area: {$ne: 0}, continent: "Asia"}}, {$project: { _id: 0, name: 1, density: {$divide: ["$population", "$area"]} }} ]);
db.world.aggregate([{"$match":{"area":{"$ne":0},"continent":"Asia"}},{"$project":{"_id":0,"name":1,"density":{"$divide":["$population","$area"]}}}]);
aggregate composition
You can have several pipeline stages, the data flows through each one in turn.
Show the name of Asian countries with a density that's over 500 people per km2. (population/area)
db.world.aggregate([ {$match: {area: {$ne: 0}, continent: "Asia"}}, {$project: { _id: 0, name: 1, density: {$divide: ["$population", "$area"]} }}, {$match: {density: {$gt: 500}}} ]);
db.world.aggregate([{"$match":{"area":{"$ne":0},"continent":"Asia"}},{"$project":{"_id":0,"name":1,"density":{"$divide":["$population","$area"]}}},{"$match":{"density":{"$gt":500}}}]);
$sort
$sort allows ordering of the results set, where 1 is ascending and -1 is descending.
Note that not including $match is the same as {"$match":{}}
Show the name of all countries in descending order.
db.world.aggregate([ {"$project":{ "_id":0, "name":1, }}, {"$sort":{ "name":-1 }} ]);
db.world.aggregate([{"$project":{"_id":0,"name":1,}},{"$sort":{"name":-1}}])
Grouping
Grouping provides accumulator operations such as $sum
All groups must have an _id. To see why this is useful imagine the following:
So far you've been using the world collection
As every country has a continent, it would make sense to have countries as a nested document inside continents: e.g:
[
{"name": "Africa",
"countries": [
{"name": "Algeria", "capital": "Algiers", ...},
{"name": "Angola", "capital": "Luanda", ...},
{"name": "Benin", "capital": "Porto-Novo", ...}.
{...},
...
]},
{"name": "Asia",
"countries": [
{"name": "Afghanistan", "capital": "Kabul", ...},
{"name": "Azerbaijan", "capital": "Baku", ...},
{"name": "Bahrain", "capital": "Manama", ...},
{...},
...
]},
{...},
...
]
The world collection isn't like this however. It uses the following structure, which has a redundancy where continent is repeated for each country.
[
{"name": "Afghanistan", "capital": "Kabul", "continent": "Asia", ...},
{"name": "Albania", "capital": "Tirana", "continent": "Europe", ...},
{"name": "Algeria", "capital": "Algiers", "contiennt": "Africa", ...},
{...},
...
]
The code to group by continent is "_id":"$continent"
If instead the question was to group by country the code would be "_id": "$name"
.
To operate over the whole document (which would have the same effect as "_id": "$name"
) "_id": "null"
or "_id": None
can be used.
group operators
$max and $min can be used to get the largest and smallest values in a group.
Get the smallest and largest GDPs of each continent.
db.world.aggregate([ {$group: { _id: '$continent', min: {$min: "$gdp"}, max: {$max: "$gdp"} }}, {$project: { _id: 1, min: 1, max: 1 }} ]);
db.world.aggregate([{"$group":{'_id':'$continent','min':{"$min":"$gdp"},'max':{"$max":"$gdp"}}},{"$project":{"_id":1,"min":1,"max":1}}]);
Some other useful aggregate functions to know are $sum and average: $avg
The example below combines previous example material.
Order the continents in descending order by total GDP, Include the average GDP for each country.
db.world.aggregate([ {$match: {}}, {$group: { _id:"$continent", "Total GDP": {"$sum": "$gdp"}, "Average GDP": {"$avg": "$gdp"} }}, {$sort: { "Total GDP":-1 }}, {$project:{ "Area": "$_id", "Total GDP": 1, "Average GDP": 1, _id: 0 }} ]);
db.world.aggregate([{"$group":{"_id":"$continent","Total GDP":{"$sum":"$gdp"},"Average GDP":{"$avg":"$gdp"}}},{"$sort":{"Total GDP":-1}},{"$project":{"Area":"$_id","Total GDP":1,"Average GDP":1,"_id":0}}]);
Using Conditions
$cond is similar to a CASE statement in other languages.
It has the form "$cond": [{<comparison>: [<field or value>, <field or value>]}, <true case>, <false case>]
db.world.aggregate([ {$group: { _id: { $cond: [{"$eq": ["$continent", "Eurasia"]}, "Europe", "$continent"] }, area: {$sum: "$area"} }}, {$sort: { area: -1 }}, {$project: { _id: 1, area: 1 }} ]);