AGGREGATE world: Difference between revisions
From NoSQLZoo
No edit summary |
No edit summary |
||
Line 107: | Line 107: | ||
<div class=ans> | <div class=ans> | ||
pp.pprint(list(db.world.aggregate([{"$match":{"name":{"$in":['France','Germany','Brazil']},"population":{"$ne":None},"area":{"$ne":0}}},{"$project":{"_id":0,"name":1,"population density":{"$divide":["$population","$area"]}}}]))) | pp.pprint(list(db.world.aggregate([{"$match":{"name":{"$in":['France','Germany','Brazil']},"population":{"$ne":None},"area":{"$ne":0}}},{"$project":{"_id":0,"name":1,"population density":{"$divide":["$population","$area"]}}}]))) | ||
</div> | |||
</div> | |||
<div class=q data-lang="py3"> | |||
Order the <code>continents</code> by <code>area</code> from most to least. | |||
<pre class=def> | |||
pp.pprint(list( | |||
db.world.aggregate([ | |||
{"$group":{ | |||
"_id":"$name", | |||
"area":{"$max": "$area"} | |||
}}, | |||
{"$project":{ | |||
"_id":1, | |||
"area":1 | |||
}} | |||
]) | |||
)) | |||
</pre> | |||
<div class=ans> | |||
pp.pprint(list( | |||
db.world.aggregate([ | |||
{"$group":{ | |||
"_id":"$continents", | |||
"area":{"$sum": "$area"} | |||
}}, | |||
{"$project":{ | |||
"_id":1, | |||
"area":1 | |||
}} | |||
]) | |||
)) | |||
</div> | </div> | ||
</div> | </div> |
Revision as of 12:55, 17 July 2015
#ENCODING import io import sys sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-16') #MONGO from pymongo import MongoClient client = MongoClient() client.progzoo.authenticate('scott','tiger') db = client['progzoo'] #PRETTY import pprint pp = pprint.PrettyPrinter(indent=4)
Country Profile
For these questions you should use aggregate([])
on the collection world
Give the name
and the per capita GDP
for those countries with a population
of at least 200 million.
per capita GDP is the GDP divided by the population.
pp.pprint(list( db.world.aggregate([ {"$match":{ "population":{"$gte":250000000} }}, {"$project":{ "_id":0, "name":1, "per capita GDP": {"$divide": ["$gdp",1000000]} }} ]) ))
Give the name
and the population density
of all countries. Ignore results where the density is "None".
population density is the population divided by the area
Use a
$match
. {"area":{"$ne":0}}
pp.pprint(list(
db.world.aggregate([
{"$project":{
"_id":0,
"name":1,
"density": {"$divide": [10000,"$area"]}
}},
{"$match":{
"density": {"$ne":None}
}}
])
))
pp.pprint(list(db.world.aggregate([{"$match":{"area":{"$ne":0}}},{"$project":{"_id":0,"name":1,"density":{"$divide":["$population","$area"]}}},{"$match":{"density":{"$ne":None}}}])))
Show the name
and population
in millions for the countries of the continent South America. Divide the population by 1000000 to get population in millions.
pp.pprint(list(
db.world.aggregate([
{"$match":{
}},
{"$project":{
"_id":0,
"name":1
}}
])
))
pp.pprint(list(db.world.aggregate([{"$match":{"continent":{"$eq":"South America"}}},{"$project":{"_id":0,"name":1,"population":{"$divide":["$population",1000000]}}}])))
Show the name
and population density
for France, Germany, and Italy
pp.pprint(list(
db.world.aggregate([
{"$match":{
"name": {"$in":['United Kingdom','United States','Brazil']},
"population": {"$ne": None},
"area": {"$ne": 0}
}},
{"$project":{
"_id":0,
"name":1
}}
])
))
pp.pprint(list(db.world.aggregate([{"$match":{"name":{"$in":['France','Germany','Brazil']},"population":{"$ne":None},"area":{"$ne":0}}},{"$project":{"_id":0,"name":1,"population density":{"$divide":["$population","$area"]}}}])))
Order the continents
by area
from most to least.
pp.pprint(list(
db.world.aggregate([
{"$group":{
"_id":"$name",
"area":{"$max": "$area"}
}},
{"$project":{
"_id":1,
"area":1
}}
])
))
pp.pprint(list(
db.world.aggregate([
{"$group":{
"_id":"$continents",
"area":{"$sum": "$area"}
}},
{"$project":{
"_id":1,
"area":1
}}
])
))